Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Appl Math Comput ; 404: 126207, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1141584

ABSTRACT

The ongoing pandemic situation due to COVID-19 originated from the Wuhan city, China affects the world in an unprecedented scale. Unavailability of totally effective vaccination and proper treatment regimen forces to employ a non-pharmaceutical way of disease mitigation. The world is in desperate demand of useful control intervention to combat the deadly virus. This manuscript introduces a new mathematical model that addresses two different diagnosis efforts and isolation of confirmed cases. The basic reproductive number, R 0 , is inspected, and the model's dynamical characteristics are also studied. We found that with the condition R 0 < 1 , the disease can be eliminated from the system. Further, we fit our proposed model system with cumulative confirmed cases of six Indian states, namely, Maharashtra, Tamil Nadu, Andhra Pradesh, Karnataka, Delhi and West Bengal. Sensitivity analysis carried out to scale the impact of different parameters in determining the size of the epidemic threshold of R 0 . It reveals that unidentified symptomatic cases result in an underestimation of R 0 whereas, diagnosis based on new contact made by confirmed cases can gradually reduce the size of R 0 and hence helps to mitigate the ongoing disease. An optimal control problem is framed using a control variable u ( t ) , projecting the effectiveness of diagnosis based on traced contacts made by a confirmed COVID patient. It is noticed that optimal contact tracing effort reduces R 0 effectively over time.

2.
Chaos ; 30(11): 113119, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-936204

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak, due to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), originated in Wuhan, China and is now a global pandemic. The unavailability of vaccines, delays in diagnosis of the disease, and lack of proper treatment resources are the leading causes of the rapid spread of COVID-19. The world is now facing a rapid loss of human lives and socioeconomic status. As a mathematical model can provide some real pictures of the disease spread, enabling better prevention measures. In this study, we propose and analyze a mathematical model to describe the COVID-19 pandemic. We have derived the threshold parameter basic reproduction number, and a detailed sensitivity analysis of this most crucial threshold parameter has been performed to determine the most sensitive indices. Finally, the model is applied to describe COVID-19 scenarios in India, the second-largest populated country in the world, and some of its vulnerable states. We also have short-term forecasting of COVID-19, and we have observed that controlling only one model parameter can significantly reduce the disease's vulnerability.


Subject(s)
COVID-19/prevention & control , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/transmission , Disease Susceptibility/epidemiology , Humans , India/epidemiology , Models, Theoretical , Quarantine/legislation & jurisprudence , Quarantine/methods , Quarantine/statistics & numerical data , SARS-CoV-2
3.
Energy Ecol Environ ; 5(5): 389-406, 2020.
Article in English | MEDLINE | ID: covidwho-327126

ABSTRACT

Spatial heterogeneity is an important aspect to be studied in infectious disease models. It takes two forms: one is local, namely diffusion in space, and other is related to travel. With the advancement of transportation system, it is possible for diseases to move from one place to an entirely separate place very quickly. In a developing country like India, the mass movement of large numbers of individuals creates the possibility of spread of common infectious diseases. This has led to the study of infectious disease model to describe the infection during transport. An SIRS-type epidemic model is formulated to illustrate the dynamics of such infectious disease propagation between two cities due to population dispersal. The most important threshold parameter, namely the basic reproduction number, is derived, and the possibility of existence of backward bifurcation is examined, as the existence of backward bifurcation is very unsettling for disease control and it is vital to know from modeling analysis when it can occur. It is shown that dispersal of populations would make the disease control difficult in comparison with nondispersal case. Optimal vaccination and treatment controls are determined. Further to find the best cost-effective strategy, cost-effectiveness analysis is also performed. Though it is not a case study, simulation work suggests that the proposed model can also be used in studying the SARS epidemic in Hong Kong, 2003.

4.
Chaos Solitons Fractals ; 136: 109889, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-245484

ABSTRACT

As there is no vaccination and proper medicine for treatment, the recent pandemic caused by COVID-19 has drawn attention to the strategies of quarantine and other governmental measures, like lockdown, media coverage on social isolation, and improvement of public hygiene, etc to control the disease. The mathematical model can help when these intervention measures are the best strategies for disease control as well as how they might affect the disease dynamics. Motivated by this, in this article, we have formulated a mathematical model introducing a quarantine class and governmental intervention measures to mitigate disease transmission. We study a thorough dynamical behavior of the model in terms of the basic reproduction number. Further, we perform the sensitivity analysis of the essential reproduction number and found that reducing the contact of exposed and susceptible humans is the most critical factor in achieving disease control. To lessen the infected individuals as well as to minimize the cost of implementing government control measures, we formulate an optimal control problem, and optimal control is determined. Finally, we forecast a short-term trend of COVID-19 for the three highly affected states, Maharashtra, Delhi, and Tamil Nadu, in India, and it suggests that the first two states need further monitoring of control measures to reduce the contact of exposed and susceptible humans.

SELECTION OF CITATIONS
SEARCH DETAIL